Logging and Lithostratigraphic Study of the Cenomanian-Santonian Reservoirs of Four Oil Wells MSP1, MSP2, MSP3 and MSP4 of the Margin of San-Pedro (Côte d’Ivoire)

Bié Goha René*, Gbangbot Jean-Michel Kouadio1, Diangle Eric, Yao N’Goran Jean-Paul2 and Digbéhi Zéli Bruno2

1UFR Environment, Laboratory of Environmental Science and Technology, University Jean Lorougnon Guedé, BP 150 Daloa, Côte d’Ivoire.
2UFR Earth Sciences and Mineral Resources, Laboratory of Marine Geology and Sedimentology, University Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJEE/2019/v10i130107
(1) Dr. Adamczyk Bartosz, Department of Food and Environmental Sciences, University of Helsinki, Finland.
(1) Ahmad Helman Hamdani, University of Padjadjaran, Indonesia.
(2) Efeoghene Enaworu, University of Leicester, UK.
Complete Peer review History: http://www.sdiarticle.com/review-history/50725

Received 16 June 2019
Accepted 22 August 2019
Published 29 August 2019

ABSTRACT

The logging and petrophysical study of four oil wells, MSP1, MSP2, MSP3 and MSP4 from San-Pedro margin of the Ivorian sedimentary basin has made it possible to evaluate the reservoir characteristics of the Cenomanian-Santonian age formations. Lithostratigraphically, this study has shown that this interval consists of clay and sandstone deposits interspersed with frequent past carbonate.

At the logging, ten (10) sandstone reservoirs are highlighted with effective porosities ranging from 16% to 21% and permeabilities from 100 mD to 1100 mD (millidarcy). These reservoirs have very good petrophysical characteristics however their high water saturation show that they are rather aquifers. The various log gamma ray profiles of the intervals considered highlight a fluvial and marine deposition environment. Sedimentation would have started in a

*Corresponding author: E-mail: bieghohrene@gmail.com;
Cenomanian-type fluvial environment and would have continued in a marine environment marked by the accumulation of sandstone and clay under the influence of transgression and regression phases in the Turonian and Lower Senonian.

Keywords: Logging; reservoirs; lithostratigraphy; petrophysics; Ivorian basin; Cenomanian; Santonian; depositing environment.

1. INTRODUCTION

Located in the southern part of the country, the Ivorian sedimentary basin grows along the West Atlantic coast from Liberia (Sassandra) to Ghana. It extends between 3°05 W and 7°30 W and develops south of the latitude 5°20 N. It results from the opening of the South Atlantic to the Jurassic and is part of the chain of sedimentary basins bordering the west Atlantic coast from southern Morocco to southern Africa [1].

This basin is of Meso-Cenozoic age [2] and includes a terrestrial part (onshore) or coastal basin and a submerged part (offshore) object of this study.

The submerged basin or offshore basin represents the largest part of the basin and develops on the continental shelf area, 750 km wide [3]. This offshore basin is studied only by oil drilling.

It presents a structure in horsts and grabens, in response to the action of transtension phenomena that surround it. These are the transforming faults of Saint-Paul in the North-West and Romanche in the South-East [4,5,6]. This deep basin is subdivided into a margin of San Pedro in the west and a margin of Abidjan in the east which are two geologically distinct margins (Fig. 1):

- The margin of San-Pedro extends from the Liberian border to the city of Grand-Lahou. This margin is characterized by a deep basement, about 8 km according to the magnetic data of Petroci [7]. This Socle on which is located a steep continental shelf characteristic of the West margin, is part of the offshore extension of the West African craton. The sediments thicken from north to south where they reach about 700 to 800m at the top of the slope.
- The margin of Abidjan extends from Grand-Lahou to the Ghanaian border. This margin is characterized by a deep basement where sediment thickness increases from west to east (towards the Ghanaian basin) [8].

These less favorable oil results from recent wells drilled in this western part of the sedimentary basin of Côte d’Ivoire are prompting new geological studies to better understand the oil system of this margin. It is in this context that this study is initiated.

The main objective sought in this study is to characterize the Cenomanian-Santonian reservoirs of this zone at logging and lithostratigraphic and petrophysical levels. The choice of this interval obeys the fact that most deposits in the Abidjan margin have ages in this range.

This study also aims to identify the reservoir zones from their lithological and petrophysical characteristic.

2. PRESENTATION OF THE STUDY AREA

The study area is located in the Ivorian offshore sedimentary basin. This basin covers an area of about 22000 km² and a width of 80 km to 150 km from east to west from the coast to depths of water above 3000 m. It constitutes the bulk of the Ivorian sedimentary basin. It presents a structure in horsts and grabens, in response to the action of transtension phenomena that surround it.

These are the transforming faults of Saint-Paul in the North-West and Romanche in the South-East [4,5,6]. This deep basin is subdivided into a margin of San-Pedro in the west and a margin of Abidjan in the east which are two geologically distinct margins (Fig. 1):

- The margin of San-Pedro extends from the Liberian border to the city of Grand-Lahou. This margin is characterized by a deep basement, about 8 km according to the magnetic data of Petroci [7]. This Socle on which is located a steep continental shelf characteristic of the West margin, is part of the offshore extension of the West African craton. The sediments thicken from north to south where they reach about 700 to 800m at the top of the slope.
- The margin of Abidjan extends from Grand-Lahou to the Ghanaian border. This margin is characterized by a deep basement where sediment thickness increases from west to east (towards the Ghanaian basin) [8].

This thickness was estimated by Petroci [7] between 6 and 10 Km by magnetic methods, but
the seismic overestimated it between 12 and 13 Km. South of Abidjan, the plateau is cut by the bottom hole.

The whole Ivorian sedimentary basin is divided into forty-eight (48) petroleum blocks today. This study area has fifteen (15) and nine (9) exploratory wells of which four (4) are studied in this work. These wells are located in blocks A, B and C of the San-Pedro Margin (Fig. 2). The coordinates of these wells are shown in Table 1.

Fig. 1. Margins of the sedimentary basin of Côte d'Ivoire

Fig. 2. Location of the wells
Table 1. Wells coordinates

<table>
<thead>
<tr>
<th>Block</th>
<th>Wells</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MSP-1</td>
<td>4°23′27,9098″N</td>
<td>6°34′02,2528″W</td>
<td>1838,5</td>
</tr>
<tr>
<td>B</td>
<td>MSP-2</td>
<td>4°16′29,841″ N</td>
<td>6°14′43,912″ W</td>
<td>2864</td>
</tr>
<tr>
<td>C</td>
<td>MSP-3</td>
<td>4°30′58,249″ N</td>
<td>5°57′31,953″ W</td>
<td>2162</td>
</tr>
<tr>
<td></td>
<td>MSP4</td>
<td>4°29′51,756″ N</td>
<td>5°56′44,100″ W</td>
<td>2303</td>
</tr>
</tbody>
</table>

3. MATERIALS AND METHODS

The material used of this work consists of technical data of drilling reports, digital logging data (L.A.S files), composite logs and computer equipment.

L.A.S (Log Ascii Standard) files are digital files that contain the log data from records made during Wireline or LWD operation.

Drilling reports provide information on the lithology and petrophysical properties of the rock layers traversed by the different wells studied.

Composite logs are a set of logging signatures consisting of Gamma ray, Sonic, Resistivity, Density and Neutron logs derived from digital logging data.

Computer hardware is made up of high-capacity computers and software, the Decision Space Geosciences (DSG) software. It is a multifunction software, which has applications in geology, geophysics and petrophysics. It allows, log analysis, loading, processing and logging data interpretation.

The methodological approach used is based exclusively on log analysis and interpretation.

Logging digital data recorded in L.A.S (Log Ascii Standard) format during acquisition is loaded into a database and processed using Decision Space Geosciences (DSG) software.

Once the files, we proceed to the assignment of the curves, the positioning of the roofs of the floors and the development of the lithological logs.

The assignment consists of matching the curves to each type of log (Gamma Ray, Sonic, Resistivity, Density and Neutron).

Once log logs have been constructed, the different lithological formations the borehole are characterized, on the basis of the signatures of the gamma ray and density-neutron logs and verified by the drill cuttings descriptions and the biostratigraphic analysis.

The potential reservoir zones correspond to the low values of gamma ray and whose thickness is greater than or equal to 10 m.

The gamma ray profile analysis also makes it possible to define the depositional environments. This analysis is based on the comparison shape of the gamma ray profile with the standard model (Fig. 3) established by Emery and Myers [9].

The petrophysical characterization of potential reservoirs, to determine: porosity (Φ), permeability (K), clay volume (Vsh), water saturation (Sw) and Net / Gross (N / G).

These parameters are calculated from formulas integrating log data. These formulas having been automated, they are directly processed by computer from specialized software such as Techlog.

- **Effective porosity (Φe)**

 It excludes unconnected pores and clay-bound water [10]. His formula is as follows:

 \[
 \Phi_e = \Phi_t (1-Vsh) \text{ with } Vsh \text{ (volume of clay)}
 \]

 There are three types of reservoir according to their porosity (Φe):

 - low porosity reservoir: (Φe) < 5%
 - medium porosity reservoir: 10% < (Φe) < 20%
 - good porosity reservoir: (Φe) > 20%

- **Permeability (K)**

 The empirical formula of Timur [11] based on the irreducible saturation method was used to assess the permeability.

 \[
 K = (0,136 \times \Phi_e^{4,4}) / (S_w)^2
 \]
With:

- **K**: permeability millidarcy
- **(S_w)_irr**: irreducible water saturation in percentage
- **Φ_e**: effective porosity in percentage

Volume of clay (Vsh)

The volume of clay is calculated from the density-neutron logs and checked with gamma ray according to the formula:

\[
V_{sh} = \frac{[GR_{\text{len}} - GR_{\text{min}}]}{[GR_{\text{max}} - GR_{\text{min}}]} \tag{3}
\]

- **GR_{\text{len}}**: GR value of the given bench read directly from the log (API);
- **GR_{\text{min}}**: minimum GR value of the same bench (API);
- **GR_{\text{max}}**: maximum GR value of the same bench (API)

Water Saturation (Sw)

The water saturation is calculated using the equation of [12]:

\[
Sw = \left(\frac{a \times R_w}{R_t \times \Phi^m} \right)^{1/n} \tag{4}
\]

With:

- **Sw**: water saturation;
- **a**: Archie tortuosity factor;
- **R_w**: resistivity of formation water;
- **R_t**: resistivity of deep formation;
- **Φ**: total porosity;
- **m**: Archie's cementing exponent;
- **n**: saturation exponent of Archie

Net/Gross (N/G)

This is a parameter that provides information on the quality of the reservoir. This is the Net ratio (i.e., the net thickness of sand) on the Gross (which corresponds to the total thickness of the reservoir).

So depending on the percentage obtained, the reservoir will be classified as:

- Poor quality **N / G < 0.1**;
- Medium quality **0.1 < N / G < 0.5**;
- Very good quality **N / G = 1**

Fig. 3. Standard gamma ray (GR) response model based on variation in grain size and deposit environments [9]

GAMMA RAY PROFIL SHAPE

- **Cylindrical**: GR->
- **Funnel**: GR->
- **Bell**: GR->
- **Symmetrical**: GR->
- **Serrated**: GR->

Aggrading
- Eolian, braided fluvial, distributary channel-fill, submarine canyon-fill, carbonate shelf-margin, evaporte fill of basin

Prograding
- Crevasse splay, river mouth bar, delta front, shoreface, submarine fan lobe, change from clastic to carbonates

Retrograding
- Fluvial point bar, tidal point bar, deep-tidal channel-fill, tidal flat, transgressive shelf

Prograding & Retrograding
- Reworked offshore bar, regressive to transgressive shoreface delta

Aggrading
- Fluvial floodplain, storm-dominated shelf, and distal deep-marine slope
These parameters are interpreted in general by the cut-off below proposed by Monicard [13]. According to him, a good rock reservoir is one that meets the characteristics below.

- Porosity (Φ) > 10%
- Volume of clay (Vsh) < 40%
- Water saturation (Sw) < 60%
- Net / Gross > 20%

4. RESULTS

4.1 Identification of Top and Potential Reservoirs

The log signatures analysis coupled with the biostratigraphy data allowed to identify the top of the different formation of the studied wells. The results are shown in Table 2.

It is noted that the layers are thicker in wells further south such as MSP-2 and MSP-4 than those located in the north (MSP-1 and MSP-3). Sediment thickness increases from north to south.

These stages are confirmed by recent biostratigraphy data. Recent palynological data distinguish a Lower Cenomanian characterized by the presence of pollen species *Triporopollenites* sp.; *Classopolis echinatus*, *Classopolis spinosus*, *Afropollis gardenus* and *Steveesipollenites biunodosus*.

As for the Upper Cenomanian, it is characterized by the association composed of spores and pollen *Classopolis echinatus*, *Afropollis jardinus*, *Steveesipollenites binodosus*, *Triortites afriacensis*, *Classopolis* sp., *Pemphixpollenites inequixinus*, *Galeocornea causea*, *Ephedrrites* sp., *Gnetaceapollenites diversus*, *Classopolis clausoides* (Plate 1).

The microfauna is dominated by the planktonic foraminifera *Herdbergella planispira*, *Herdbergella delrioensis*, *Herdbergella sp.* and *Globigerinoides bentonensis* [14].

- Turonian

The highlight of Turonian is mainly planktonic foraminifera: *Whiteinella baltica*, *Whiteinella paradubia Herdbergella delrioensis*, *Herdbergella simplex*, *Heterohelix moremani*, *Whiteinella archaeocretacea* [15,16].

Palynologically, no species has been clearly described as a good stratigraphic marker. However, Turonian is characterized from pollen grains *Florentinia radiculata*, *Florentinia sp.*, *Tricopites giganteus*, *Odontocthina operculata*, *Tricopites sp.*, *Tricopites microstriatus*, *Tricopites sp.*, and *Parasympolites sp.* [15] (Plate 2).

- Lower Senonian (Santonian-Coniacian)

The Lower Senonian is characterized by the planktonic foraminifera *Dicarinella concavata*, *Marginotruncana renzi*, *Hastigerinoideas alexanderi*, *Herdbergella sp.* and *Heterohelix globulosa* [17].

Palynologically, this stage is characterized by marker dinocysts such as *Canningia sp.*, *Oligosphaeridium complex*, *Dinogymnium acuminatum*, *Dinogymnium sp.*, *Xenasus sp.*, *Oligosphaeridium pulcherrinum*, *Circulodinium distinctum*, *Droseridites sononicus*, and *Ariadnaesporites spinosus* [18] (Plate 3).

4.2 Reservoirs Oil Potentials

Analysis of Gamma Ray (GR) data from the wells revealed potential reservoirs. Classically, gamma-ray is used for the determination of clay and sand formations. The highest values of gamma ray correspond to the clay formations and the lowest values to the sandy formations.

In principle, gamma ray measures the clayiness of the formation [19]. This study revealed ten (10) reservoir levels of variable thickness in the four wells studied. Table 3 gives details of these reservoirs and their lithostratigraphic characteristics. Some reservoirs have small discontinuity intervals which are in fact clay beds of high gamma Ray value interspersed in a zone of low values (Figs. 4 and 5). These intercalations are encountered in the tanks R3 and R1 compartmentalized in tanks R3a, R3b and in tanks R1a and R1b at the wells MSP-3 and MSP-4.

The reservoir levels encountered in this study mainly consist of calcareous, clay and sandstone. These reservoirs are clay and silts. They are covered by thick layers of clay or silts (Fig. 6).

4.3 Correlation of Reservoir Levels of Studied Wells

The West-East correlation profile between the different reservoirs (Fig. 7) shows that only the
Turonian reservoir (R2) is continuous over the entire profile and that its thickness decreases progressively from west to east. As for the other tanks, they are discontinuous. The Cenomanian (R1) and Coniacian (R3) reservoirs are present only in the East. We also note that the Santonian reservoir (R4) is absent in the center of the profile that is to say in the block B and that its thickness decreases from West to East. This can be explained by erosion caused by eustatic variations in the Ivorian sedimentary basin. The absence of R1 and R3 in the rest of the zone may be due to a no deposit phase or erosion. If the thickness of the tank R3 decreases towards the East, the thickness of R4 increases.

4.4 Petrophysical Characteristics of Reservoirs

The results of the petrophysical evaluation are recorded in the Table 4.

Plate 1. Cenomanian palynomorphs

1 - Classopolis echinatus, 2 - Afropollis jardinus, 3 - Steveesipollenites binodosus, 4 - Triorites africaensis, 5 - Classopolis sp.; 6 - Pemphixipollenites inequiexinus, 7 - Galeocornea causea, 8 - Ephedrrites sp., 9 - Gnetaceapollenites diversus, 10 - Classopolis classoides

Table 2. Top of the formation of studied wells

<table>
<thead>
<tr>
<th>Wells top of stage (m)</th>
<th>MSP-1</th>
<th>MSP-2</th>
<th>MSP-3</th>
<th>MSP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Santonian</td>
<td>2960</td>
<td>5068</td>
<td>3821</td>
<td>3976</td>
</tr>
<tr>
<td>Top of Coniacian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Turonian</td>
<td>3080</td>
<td>5162.5</td>
<td>3980</td>
<td>4219</td>
</tr>
<tr>
<td>Top of Cenomanian</td>
<td>3260</td>
<td>5370</td>
<td>4090</td>
<td>4315</td>
</tr>
<tr>
<td>Cenomanian base</td>
<td>3430</td>
<td></td>
<td>4228</td>
<td>4529</td>
</tr>
</tbody>
</table>
Plate 2. Turonian palynomorph
1 - Florentinia radiculata, 2 - Florentinia sp., 3 - Tricolpites giganteus, 4 - Odontochitina operculata, 5 - Tricolpites sp., 6 - Tricolpites microstriatus, 7 - Tricolpites sp. SCI 348-155, 8 - Parasyncolpites sp.

Plate 3. Early senonian palynomorphs (Coniacian-santonian)
1 - Canningia sp., 2 - Oligosphaeridium complex, 3 - Dinogymnium acuminatum, 4 - Dinogynium sp., 5 - Xenascus sp., 6 - Oligosphaeridium pulcherrimum, 7 - Circulodinium distinctum, 8 - Droseridites senonicus, 9 - Ariadnaesporites spinosus
Table 3. Potential reservoirs and their lithostratigraphic characteristics

<table>
<thead>
<tr>
<th>Reservoirs of stage</th>
<th>MSP-1</th>
<th>MSP-2</th>
<th>MSP-3</th>
<th>MSP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santonian (R4)</td>
<td>No reservoir R4</td>
<td>R4 (95 m) Sandstone white to gray with fine to very coarse grains</td>
<td>No reservoir</td>
<td>R4 (70 m) Fine to coarse sandstone poorly cemented with a clay-limestone cement</td>
</tr>
<tr>
<td>Coniacian (R3)</td>
<td>No reservoir R3</td>
<td>No reservoir R3</td>
<td>R3b (50 m) Fine to coarse sandstone, compacted or not, with limestone cement</td>
<td>R3 (50.5 m) Very fine to medium sandstone with limestone cement</td>
</tr>
<tr>
<td>R3a (60 m) Fine to coarse sandstone, compacted or not, with limestone cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turonian (R2)</td>
<td>R2 (110 m) Coarse sandstone, with limestone cement</td>
<td>R2 (90 m) Gray sandstone, fine to medium, with limestone cement and clay interlayers</td>
<td>R2 (70 m) Fine to coarse sandstone with limestone cement</td>
<td>R2 (55 m) Gray sandstone, very fine to medium, with limestone cement</td>
</tr>
<tr>
<td>Cenomanian (R1)</td>
<td>No reservoir R1</td>
<td>No reservoir R1</td>
<td>R1b (23 m) Fine to coarse sandstone, compacted or not, white to gray, calcareous cement</td>
<td>R1b (54 m) Very thin to medium gray to light gray to calcareous cement</td>
</tr>
<tr>
<td>R1a (38 m) Fine to coarse sandstone, compacted or not, white to gray, calcareous cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1a (146 m) Very thin to medium gray to light gray to calcareous cement</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4. Potential reservoir levels of MSP1, MSP3 and MSP4 wells
Fig. 5. Potential reservoir levels of the MSP2 well
Fig. 6. Lithostratigraphic log of the different wells studied
Fig. 7. West-East Correlation profile of wells reservoirs studied
Table 4. Results of the petrophysical study

<table>
<thead>
<tr>
<th>Block</th>
<th>Wells</th>
<th>Formations</th>
<th>Interval</th>
<th>Reservoirs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extension (m)</td>
<td>Gross (m)</td>
</tr>
<tr>
<td>A</td>
<td>MSP1</td>
<td>TURONIAN</td>
<td>3120-3230</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>MSP2</td>
<td>SANTONIAN</td>
<td>5068-5162.5</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TURONIAN</td>
<td>5260-5350</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>MSP3</td>
<td>CONACIAN</td>
<td>3878-3980</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TURONIAN</td>
<td>3980-4060</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CENOMANIAN</td>
<td>4153-4228</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>MSP4</td>
<td>SANTONIAN</td>
<td>4028-4098</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONACIAN</td>
<td>4155-4219</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TURONIAN</td>
<td>4260-4315</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CENOMANIAN</td>
<td>4315-4529</td>
<td>214</td>
</tr>
</tbody>
</table>

The analysis of the petrophysical parameters reveals generally for the different wells studied that:

- Porosity (Φ) varies from 16% to 21% in all tanks. This result indicates that the reservoirs have medium to good porosities.
- **Volume of clay (Vsh):** With the exception of the reservoir R2 of the MSP2 well, which can be qualified as a medium quality reservoir with a Vsh of 25%, the other reservoirs are good qualities because the volume of clay is less than 20%.
- **Water saturation (SW):** This study shows that the water saturation of the different tanks is greater than 80%. This result indicates that the identified reservoirs are aquifers.
- **Net to Gross (N / G):** The Net to Cross values are above 20% and indicate that the tanks are good qualities.

In general, [13] estimates that an oil reservoir is of good quality if the cut-off values of the following parameters are respected:

- Porosity (Φ) > 10%
- Volume of clay (Vsh) < 40%
- Water saturation (Sw) < 60%
- Net / Gross > 20%

With the exception of water saturation, our results indicate that the potential reservoirs highlighted are of good quality. They have all the necessary characteristics to store hydrocarbons except that they are all aquifers.

4.5 Deposit Environments of Reservoir Levels

From the different form of the Gamma Ray profile of the identified reservoir levels, the associated depositing environments are determined. Figs. 8, 9, 10 and 11 indicate the deposition environments of the identified reservoirs.

At the Cenomanian, reservoir sediments deposited either in a fluvial environment because of the serrated form of the Gamma Ray or marine with strong fluvial influence because of cylindrical shape that tends towards the serrated form of Gamma Ray (Fig. 8). This is confirmed by the palynological data which indicates a predominance of spores and pollen grains characteristic of a continental environment (Plate 1). Also the marine influence is indicated by the presence of foraminifers.

In Turonian, reservoir sediments were deposited in environments ranging from marine to fluvial through deltaic environments due to the
combination of cylindrical, serrated, funnel and bell-shaped Gama Ray (Fig. 9). This is confirmed by the presence of dinocyst which characterizes this marine environment (Plate 2).

At the Coniacian and Santonian tanks were set up in a marine environment (Figs. 10 and 11). This is confirmed by the presence of dinocyst which characterizes this marine environment (Plate 3).

From this study, two dominant deposition environments emerge. Sedimentation would have started in a fluvial environment and would have continued in a marine environment marked by the accumulation of sandstone, clay, limestone. However, frequent variations of the deposition conditions in connection with the phenomena of transgressions and regressions are observed.

5. DISCUSSION

The identification of reservoir levels based on low gamma ray profiles was used by [20] in Benin to highlight Albian reservoirs in the deep offshore part of the Beninese coastal basin. These potential reservoirs are sandy with a variable percentage of clay that serves as cement.
<table>
<thead>
<tr>
<th>WELLS</th>
<th>STAGE</th>
<th>RESERVOIR</th>
<th>GAMMA RAY</th>
<th>SHAPE</th>
<th>DEPOSIT ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP1</td>
<td>TURONIAN</td>
<td>R2</td>
<td></td>
<td>BELL</td>
<td>MARINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FLUVIAL</td>
</tr>
<tr>
<td>MSP2</td>
<td>TURONIAN</td>
<td>R2</td>
<td></td>
<td>CYLINDRICAL</td>
<td>MARINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYMMETRICAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BELL</td>
<td>DELTAIC</td>
</tr>
<tr>
<td>MSP3</td>
<td>TURONIAN</td>
<td>R2</td>
<td>INDENTED</td>
<td>DELTAIC</td>
<td>DELTAIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CYLINDRICAL</td>
<td></td>
<td>MARINE</td>
</tr>
<tr>
<td>MSP4</td>
<td>TURONIAN</td>
<td>R2</td>
<td>CYLINDRICAL</td>
<td></td>
<td>MARINE</td>
</tr>
</tbody>
</table>

Fig. 9. Turonian reservoir deposit environments
Thus, with this method, 10 silty reservoir levels presenting clay levels by location are highlighted and are consistent with those obtained by Petroci [21] which indicate that the reservoirs of Côte d'Ivoire basin are sandstone.

Lithostratigraphy

This study reveals that sedimentation is mainly silico-clastic dominated by clays and sandstones (dominant facies) and incidentally silts, sands and limestones. Chierici [17] has shown that deposits in the Upper Albian-Lower Senonian interval of the Ivorian sedimentary basin are characterized by clay-sandstone deposits locally enriched with limestone. The results of Chierici [17] were confirmed by those of [2] and recalled by Bie [22].

The gritty nature of the reservoirs described in this work is confirmed by the work of Petroci [21].

Petroci [7] demonstrated that the lithology of reservoir levels of the Abidjan margin in the Cenomanian-Santonian interval is identical to that described in this study on the margin of San-Pedro.
Correlation

The correlation established between the reservoir levels shows that the thickness of the Turonian reservoirs is gradually decreasing from west to east of our study area as described by the results of Spengler [23] recalled by Bie [22], which showed that the Turonian isn’t visible throughout the basin because it is strongly eroded during the Turonian [17] or Senonian regression [2].

The effect of this erosion has been accentuated more in the East where the Turonian is no longer continuous and appears in tatters. However in the margin of San-Pedro, the Turonian isn’t in flap but is continuous on the scale of the margin. The other identified reservoirs are not continuous either because they are eroded or have not been deposited.

Petrophysical evaluation

The petrophysical evaluation shows that the different reservoirs identified are of good quality because their petrophysical characteristics are in line with those of a quality reservoir according to [13]. However, the strong cementation of sandstone at some levels has contributed to the

Fig. 11. Santonian reservoir deposit environments
reduction of porosity and has influenced overall petrophysical properties that could have been better. Yao et al. [24] have shown that the porosity of rocks is related to the diagenesis and the dissolution of certain minerals, the low porosity of the reservoirs of the MSP2 well.

This study also shows that the study area was affected by transgressions and regressions that caused lateral and vertical facies variations. These phenomena could sensibly modify the petrophysical characteristics of the reservoirs.

Deposit environment

Comparison of the Gamma Ray signatures of the reservoirs identified with the standard model established by Emery and Myers [9] shows that sedimentation of the study area started in a fluvial environment and continued in a marine environment. The variations recorded in the different phases are mainly due to the numerous transgressions and regressions movements experienced by the Ivorian sedimentary basin. Indeed, Petters [25] and Mobio [26] showed that the deep oceanic domain of the Ivorian basin recorded three transgressive episodes.

It begins with the transgression of the Upper Albian, which is not a generalized phenomenon at the scale of the whole basin [2]. At the end of the Upper Albian, there is a generalized regression on the scale of the whole basin which marks the passage from the Albian to the Cenomanian.

This regression, which marks the passage from the Albian to the Cenomanian, results in an important discordance of the Cenomanian on the Albian.

The Cenomanian reservoirs (R1) would have deposited during this regression, or the littoral conditions favorable to the deposition of fluvial types prevailed in the basin.

At the Cenomanian, there is a re-watering of the basin. This second transgressive episode generalized throughout the basin will continue until the end of the Lower Senonian.

This marine transgression is highlighted in the MSP4 well where all the tanks have been highlighted and deposited in a marine environment.

This marine transgression is interrupted at times by periods of regression, thus generating fluvial and deltaic deposits observed in the Turonian reservoirs of the MSP1 and MSP3 wells.

According to Sombo [2], in the Lower Senonian, there is another regressive phase which causes a strong erosion of the deposits of the Lower Senonian and in places those of the Turonian.

This regression is highlighted in this study by the deposition of deltaic or fluvial sediments that cover the marine deposits in the MSP3 well.

This period is characterized by clay-sandstone deposits enriched locally in limestone.

The third transgressive episode occurs in the Upper Senonian.

6. CONCLUSION

This study made it possible to characterize the Cenomanian, Turonian and Lower Senonian reservoirs of four oil wells located on the margin of San-Pedro.

On the lithostratigraphic level, the analysis of log data and log gamma ray revealed a total of ten (10) reservoir levels in all four wells studied in the Cenomanian-Santonian interval.

These reservoir levels identified, are mainly sandstone with fine grains and with limestone or clay cement. These reservoir are surmounted by clay or silts that serve as rock cover.

Lithological synthesis has shown that these sandstones come from the mainland and are deposited in a marine or deltaic environment with low to high energy.

Petrophysically, petrophysical parameters have shown that reservoirs are good quality; they have all the conditions necessary to store hydrocarbons. However, their high water saturation makes them aquifers.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Goua TE. Biostratigraphy and palaeoenvironmental evolution of the Maastrichtian and Paleocene series in the Ivorian coastal sedimentary basin. PhD

21